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Phase Noise in Self-Injection-Locked
Oscillators—Theory and Experiment
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Abstract—Phase-noise analysis of the self-injection-locked
oscillator is presented in this paper. The analysis is developed for
different oscillator models and arbitrary self-injection feedback
loops. The results are illustrated with specific cases of simple
time-delay cable and a high- factor resonator. It is shown that
the behavior of the phase noise is similar to an oscillator locked to
an external low phase-noise source. The output phase noise can be
reduced at the noise offset frequency near the carrier frequency,
and returning to the free-running oscillator noise far from the
carrier frequency for certain stable feedback delay ranges. The
phase-noise reduction is affected by the self-injection signal
strength and feedback transfer function for different oscillator
equivalent-circuit models. The theory is verified by using a self-in-
jection-locked GaAs MESFET oscillator operating at the -band
with delay cable loops. The self-injection-locked technique may be
used to improve the phase noise of the existing oscillators.

Index Terms—AM noise, delay line, feedback loop, injection
lock, noise, oscillator, parallel resonant, phase (PM) noise,
resonator, self-injection lock, series resonant, stability.

I. INTRODUCTION

COMMERCIAL and military applications for microwave
and millimeter-wave sources in communication systems

require low phase-noise oscillators. Similarly, commercial dig-
ital communication systems also put strict constraints on the
signal-to-noise ratio and bit error rate (BER) for high-fidelity
information transmission. Phase-noise reduction in the oscilla-
tors typically use the very high- external resonator in the os-
cillator circuits [1] or pass the oscillator output signal through
the high- cavity to eliminate the noise components. Injection
locking the oscillator [2], [3] with an external low phase-noise
source has been proposed to reduce the oscillator phase noises
[4]–[6]. The noise reduction in single one- and coupled-oscil-
lator arrays phase locked to the external low phase-noise signal
has been verified in the authors’ previous work by theories and
experiments [7]–[9].

A self-injection lock technique has been used in lasers to re-
duce the linewidth and frequency (or phase) noise [10], [11]. A
part of the oscillator output signal is used to injection lock the
oscillator itself. The self-injection signal has the same frequency
as the oscillator, and it is easy for the oscillator to remain phase
locked for certain stability conditions [12]–[14]. The stability
analysis has been derived in [14]. In this paper, the author ex-
tends the previous work to explore the spectral characteristics of
the noise and the dependence on the feedback transfer function
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and self-injection signal strength in theory and verify the results
by experiments. The specific cases of the simple cable delay
line and the high- factor resonator in the feedback loop for
different oscillator models [13], [14] are analyzed in this paper.
Here, we only consider the oscillator phase noise. Amplitude
noise and AM-to-PM noise conversion are assumed negligibly
small, as compared to PM noise. The self-injection-locked tech-
nique may be used to improve the phase noise of the existing
oscillators.

II. PHASE DYNAMICS OF A SINGLE NOISY OSCILLATOR WITH

A NOISY SELF-INJECTION SIGNAL

The phase dynamics of the injection-locked oscillator de-
pends on the coupling phase and the types of the oscillator cir-
cuits, which can be represented by an equivalent parallel- or
series-resonant circuit model [13], [14]. If a part of the oscil-
lator output signal is extracted and fed through a feedback with
the transfer function [the frequency response is and the
time-domain response is ] and then into the oscillator injec-
tion port (see [14, Fig. 1]), the phase relationship of the self-in-
jection-locked oscillator [13], [14] becomes

(1)

where is the carrier frequency, , are
the instantaneous phases of the oscillator output signal and the
injection signal, respectively, and is the convolution symbol.

and are the free-running frequency and factor of the os-
cillator, respectively. is half the 3-dB band-
width of the oscillator tank circuits. The upper sign is for par-
allel-resonant oscillators and the lower sign is for series-reso-
nant oscillators. The coupling phase [7], [8] or delay from the
injection signal source has been included in .
is the injection strength, and the injection signal is nor-
malized to the oscillator’s free-running amplitude . is a
time-varying noise susceptance (or the quadrature phase com-
ponent of the noise admittance) and is assumed to be an ergodic
process [7], [8].

A steady-state noise-free synchronized state for the oscilla-
tors satisfies

(2)

where is the injection frequency,
is half the 3-dB bandwidth of the oscillator tank

circuits, is half the entire locking range, and
the circumflex denotes a steady-state quantity. The upper
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sign is for parallel oscillators and the lower sign is for series
oscillators.

The differential equation (1) without the term is an
implicit equation of , and one needs to use the numerical
method to find the exact steady-state solution with the initial
value . However, the locking range in real self-
injection-locked oscillators and the steady-state phase can be
approximated by .

III. PHASE NOISE OF THE SELF-INJECTION-LOCKED

OSCILLATORS

After knowing the phase dynamics of the self-injec-
tion-locked oscillator, one wants to find the phase-noise
expressions. The phasor expression of the injection signal is

(3)

where denotes the Fourier transform and is the self-in-
jection-locked feedback transfer function in the frequency do-
main, as shown in [14, Fig. 1]. Assuming the noise is a small
perturbation to a noise-free solution, one can write

, ,
, and in (1) and

(3), where and describe the small phase fluctua-
tions of the oscillator output and injection signals, respectively.
Equation (3) becomes

(4)

where is the Dirac delta function. The output of the feed-
back loop in the self-injection-locked oscillator has the same
frequency as the oscillator output so that the phase fluctuation
of the injection signal around the carrier frequency in the fre-
quency domain is

(5)

(or ) and the relationship in the
time domain is

(6)

where is the convolution symbol.
Therefore, for self-injection-locked oscillators the phase fluc-

tuation (1) becomes

(7)

where the upper sign is for parallel oscillators and the lower sign
is for series oscillators.

The loop phase can be defined as

(8)

If is independent of a time variable (i.e., ), Fourier trans-
forming (7) and rearranging terms gives

(9)

where the tilde denotes a transformed or spectral variable.
is the carrier frequency and is the noise offset frequency

from the carrier frequency. is used as the noise offset fre-
quency instead of for the clarity of symbol notations. The
upper sign is for parallel oscillators and the lower sign is for
series oscillators. The power spectrum of the oscillator phase
fluctuation is calculated from , where the no-
tation represents an ensemble average [7], [8].

In the absence of the self-injection signal , the con-
volution terms of in (7) and (9) disappear and the power
spectrum density of the oscillator phase fluctuation (the phase
noise) reduces to the familiar phase fluctuation spectral density
of a single one free-running oscillator [7], [8]

(10)
where the notation has been dropped, an ensemble or time
average being implicitly understood.

One can calculate this power spectrum by using (9) and obtain
the phase noise in self-injection-locked parallel-resonant oscil-
lators with a feedback transfer function

(11)

where the upper sign is for parallel oscillators and the lower sign
is for series oscillators. From the stability analysis [14], the loop
phase is required to satisfy for a stable output phase.
One can calculate the phase noise at certain loop phase points
to illustrate the phase-noise reduction in self-injection-locked
oscillators.

Now the phase-noise expressions have been obtained for self-
injection-locked parallel and series-resonant oscillators with an
arbitrary feedback transfer function . In the following, the
specific cases of the simple delay-line cable and high- factor
resonator in the feedback loop are illustrated to study the phase-
noise performances of the oscillators.

IV. DELAY-LINE CABLE IN FEEDBACK LOOP

If the self-injection signal is fed into some cable delay line
and then injection locked into the oscillator, one can assume that
the cable loss is very small and negligible and
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[and then ] within the interested frequency range
for simplicity, where is the loop delay time.

With (11), the phase fluctuation of self-injection-locked os-
cillator with a delay-line cable in the feedback loop is

(12)

where the loop phase and the
notation has been dropped, with an ensemble or time average

being implicitly understood. The upper sign is for parallel oscil-
lators and the lower sign is for series oscillators.

A. Loop Phase or

If the loop phase , where is an integer,
the phase noise (12) of the self-injection-locked parallel oscil-
lator becomes

(13)

By substituting

(14)

into (13), where the l’Hôpital rule is used from standard cal-
culus, one can find the phase noise near the carrier frequency
(i.e., )

(15)

If one increases the self-injection signal strength and the loop
delay while keeping the loop phase or ,
the phase noise of the oscillator at the noise offset frequency
near the carrier frequency can be reduced further. For a longer
delay-line cable, the phase noise in the self-injection (or de-
layed) signal will be less correlated with the undelayed signal
and the related phase noise at the output port. Thus, the noise
will tend to add incoherently, whereas the signal adds coher-
ently if the delay is within the stable delay ranges for parallel-
or series-resonant oscillators, as shown in [14, Fig. 3]. There-
fore, the total oscillator phase noise is reduced in the feedback
loop system (i.e., the self-injection-locked oscillator). However,
the longer loop delay requires the longer cable delay line,
and it will be impractical to use a long cable in the self-injec-
tion-locked oscillator to reduce the phase noise.

At the other extreme (far from the carrier frequency) and
, the oscillator phase noise approaches the free-run-

ning noise properties

(16)

and the self-injection lock has no effect on the phase-noise re-
duction.

However, from the stability analysis, the phase of the series-
resonant oscillators with a self-injection signal cannot be stable.
The phase noise cannot be reduced by using a self-injection-
locking technique under this condition.

B. Loop Phase

If the loop phase , where is
an integer, from the stability analysis, the phase of the parallel-
resonant oscillators with a self-injection signal cannot be stable.
The phase noise cannot be reduced by using a self-injection-
locking technique under this condition.

For series oscillators, the phase noise (12) also becomes (13),
which is the same as the self-injection-locked parallel-resonant
oscillators with loop phase or . They both have same
phase-noise performances.

C. Loop Phase or

If the loop phase , where
is an integer, the phase noise (12) of the self-injection-locked
oscillator becomes

(17)

The injection signal has a quadrature phase delay with respect
to the oscillator undelayed output signal, and then, there is no
effect on phase-noise reduction for both parallel and series os-
cillators.

In the above derivations, we assume that there is no atten-
uation loss in the delay-line cables. However, there is some
attenuation loss in real delay-line cables. The self-injection
signal strength will decrease further as the delay-line cable
gets longer. One can substitute into (12) and
get its derivative with respect to the delay-line cable length

equal to zero to obtain the optimum delay-line length and
phase-noise reduction, where and are the self-injection
signal strength function of the attenuation loss and attenuation
loss parameter in delay-line cables, respectively. However, one
also needs to make sure that the phase delay related to the
cable length is within the stable loop phase-delay range in [14,
Fig. 3]. If the delay-line cable is too long, the self-injection
signal strength will be very small, and the self-injection-locked
technique on oscillator phase-noise reduction will not take into
effects.

The spectral characteristics of the phase noise in a self-injec-
tion-locked parallel-resonant oscillator with a feedback delay
loop are shown in Fig. 1 for illustration. The phase noise of the
oscillator follows the ideal dependence. As the self-injec-
tion signal strength increases, the phase noise is reduced fur-
ther. For a longer feedback delay while keeping ,
the phase noise is reduced further.
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Fig. 1. Simulated phase noise of the self-injection-locked parallel resonant
oscillator with a delay cable of �� = 200� (the delay T = 100=f ) and
�� = 1000� (the delay T = 500=f ) in the loop, where f = 8:0 GHz is
the frequency of the self-injection-locked oscillator. The loop phase satisfies the
stability condition (i.e., cos��̂ > 0). As the self-injection signal strength �
increases, the phase noise is reduced further for noise offset frequency near the
carrier frequency.

V. HIGH- FACTOR RESONATOR IN FEEDBACK LOOP

Thehigh- factorresonatorhasbeenusedtostabilize theoscil-
lator signals and reduce the phase noise inside the oscillator cir-
cuits. If one extracts a part of the oscillator output signal passed
through a high- factor resonator, one can get the injection signal
withpurespectrumandreducethephasefluctuationof theself-in-
jection signal. The frequency response (or the transfer function)
of the high- factor resonator can be written as

(18)

where and are the resonance frequency and factor of
the resonator, respectively, and is the entire 3-dB band-
width of the resonator.

For the oscillator with a self-injection signal passed through
a high- factor resonator, the phase noise from (11) becomes

(19)

where the upper sign is for parallel oscillators and the lower sign
is for series oscillators, and (18) has been used and written as

(20)

in order to get a clear insight into the phase-noise properties.
Here, we are interested in the phase noise around and

, and the phase noise of the self-injection-locked oscillator
becomes

(21)
where the upper sign is for parallel oscillators and the lower sign
is for series oscillators.

From the stability analysis, one can use (or ) in
parallel oscillators and in series oscillators for the op-
timum stable output phase, and the phase noise of the oscillator
with the self-injection signal passed through a high- factor res-
onator is

(22)

From the above equation, one can find that the phase noise is re-
duced in the self-injection-locked oscillator with a high- factor
resonator in the loop. If , there is no self-injection signal,

and the phase noise becomes its free-running value .
For the phase noise near the carrier frequency

(23)

One can find that the phase-noise reduction factor at the carrier
frequency is decided by , the factor ratio of the high-
factor resonator to the oscillator. If the factor ratio increases,
the phase noise is reduced further because the high- factor
resonator is an excellent bandpass filter centered at ,
which shapes the spectrum of the self-injection signal as a low
phase-noise signal source. As the self-injection signal strength

increases, the phase noise is reduced further.
At another extreme (far from the carrier frequency

), . The phase noise returns to its
free-running value and the self-injection locking has no effect
on noise reduction. The results are the same as the phase-noise
properties of the oscillator locked to an external low phase-noise
signal [8].
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Fig. 2. Simulated phase noise of the self-injection-locked parallel-resonant
oscillator with different self-injection signal strength � and high-Q factor
resonator (Q ) in the loop. The oscillator and resonance frequency of the
resonator 8 GHz, the loop phase ��̂ = 2�, and the Q factor of the oscillator
Q = 20 are used in the simulations, and the loop phase satisfies the stability
condition (i.e., cos��̂ > 0). As the self-injection signal strength � or Q
increases, the phase noise is reduced further for noise offset frequency near the
carrier frequency. For noise offset frequency far from the carrier frequency, the
phase noise is returned to its free-running value.

If for parallel oscillators and (or ) for se-
ries oscillators, from the stability analysis, the output oscillator
phase is not stable, and the phase noise cannot be reduced under
this condition.

If , where is an integer,

and the self injection signal has no effect on phase-
noise reduction at all for both parallel and series oscillators.

The phase-noise characteristics of the self-injection-locked
oscillator with a high- factor resonator are shown in Fig. 2.
Here, we use the parallel-resonant oscillator and the high-
factor resonator with and resonance frequency and
the loop delay phase as illustrations. As the self-in-
jection signal strength increases, the phase noise is reduced
further for the noise offset frequency near the carrier frequency.
If the factor of the resonator is increased, the noise reduction
effect is more evident near the carrier frequency.

VI. EXPERIMENTAL RESULTS

An oscillator was used for the experimental verification of
this paper’s theory. The oscillator is a varactor-tuned MESFET
voltage-controlled oscillator (VCO) with a nominal tuning
range of 8–9 GHz. The VCO uses an NE32184A packaged
MESFET and M/A-COM 46600 varactor diode, and is fab-
ricated on a Rogers Duroid board 5880 with the
thickness 0.787 mm [7], [8]. The output power of the oscillator
is dBm. The factor of the oscillator can be decided
from the injection-locking range [7], [8], and at

GHz. The oscillator is parallel resonant, which
is verified by the coupled oscillator array with an antenna array
by testing its radiation patterns [13].

The measurement setup is the same as [14, Fig. 1 or 4], and
one output port of the power divider is connected to the Agi-
lent Spectrum Analyzer E4407B with phase-noise measurement
personality (option 226) [5]. Time-domain reflectometer (TDR)
is also used to test the delays of the individual components in
the loop, including the cable connecting the oscillator and circu-
lator, the delay within circulator ports, the connection between
the circulator and power divider, the delay within power-divider
ports, and the feedback cable between the power divider and

Fig. 3. Experimental results of free-running oscillator phase noise and phase
noise of the self-injection-locked oscillator with the loop delay of 15.70 ns.
The oscillator output power is P = 5:5 dBm. We use different attenuators
and measure the total insertion losses of the self-injection feedback loop,
while keeping the loop under the stable condition (i.e., cos��̂ > 0). The
results show good qualitative agreement with theoretical values and Fig. 1.
The phase-noise curves depart from the ideal curves within some noise offset
frequency ranges, which may be caused by the change of the oscillator output
load, or averaging and smoothing phase-noise measurements in ten successive
spectrum sweeps in an Agilent E4407B phase-noise measurement personality.
The phase noise is reduced as the self-injection signal strength increases for
the self-injection locked oscillator.

circulator, and then add up those delays in the feedback loop
as the total delay. One can put different attenuators or cable
length in the feedback loop to change the self-injection signal
strength and delay, respectively. We then observe the self-injec-
tion-locked oscillator output spectrum while keeping the whole
setup to satisfy the stability conditions.

First, we want to test the phase noise of the free-running os-
cillator. We use the setup of the self-injection-locked oscillator,
except there is no feedback injection signal. One output port of
the power divider is connected to the spectrum analyzer, and the
other output port is terminated with a 50- load. The self-injec-
tion signal port of the circulator is also terminated with a 50-
load. The free-running frequency of the oscillator is 8.193 GHz,
and the measured phase-noise result is shown in Fig. 3. When
we apply the self-injection signal, there is a slight frequency
shift from 8.193 to 8.150 GHz due to the change of the oscil-
lator output load.

Here, we are interested in the phase-noise measurements on
the loop delay of 15.70 ns. We use different attenuators and
measure the total insertion losses of the self-injection feedback
loop, while keeping the loop under the stable condition (i.e.,

). The phase-noise measurement results are also
shown in Fig. 3. The results show good qualitative agreement
with Fig. 1. The phase-noise curves depart from its ideal
curves within some noise offset frequency ranges, which
may be caused by the change of the oscillator output load
or averaging and smoothing the phase-noise measurements
in ten successive spectrum sweeps in an Agilent E4407B
phase-noise measurement personality. We find the phase noise
is reduced as the self-injection signal strength increases for the
self-injection-locked oscillator. This confirms our oscillator
phase-noise analysis of self-injection-locked oscillators.

VII. CONCLUSIONS

Phase-noise analysis of the self-injection-locked oscillator
has been presented. The analysis has been developed for
different oscillator models and arbitrary self-injection feedback
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loops. The results are illustrated with specific cases of a simple
time-delay cable and a high- factor resonator. The behavior
of the phase noise is similar to an oscillator locked to the
external low phase-noise source. The phase noise is reduced
at the noise offset frequency near the carrier frequency, and
returning to the free-running oscillator noise far from the
carrier frequency for certain stable feedback delay ranges. The
phase-noise reduction is affected by the self-injection signal
strength and feedback transfer function for different oscillator
equivalent-circuit models and certain stable feedback delay
ranges. For a high- factor resonator with resonance frequency
centered at the carrier frequency in the loop, as the factor
increases, the phase noise is reduced further because the high-
factor resonator is an excellent bandpass filter and it shapes the
self-injection signal as the low phase-noise signal source. The
self-injection-locked technique may be used to improve the
phase noise of the existing oscillators.

The theory is verified by using a self-injection-locked GaAs
MESFET oscillator operating at the -band with delay cable
loops. The phase-noise properties for the stable self-injection-
locked oscillator have similar performances as the oscillator
locked to an external low phase-noise source. As the self-injec-
tion signal strength increases for stable loop phase conditions,
the phase noise is reduced. There are still several aspects of the
noise analysis not treated in this paper. The first one is the in-
fluence of amplitude noise and AM-to-PM noise conversion.
Those effects are considered negligible for the noise offset fre-
quency near the carrier frequency in this paper. Secondly, in the
derivation of the phase noise in self-injection-locked oscillators,
we use the assumption that the loop phase is constant with re-
spect to time. However, there is still some small variation of the
oscillator frequency due to the change of the oscillator output
load. If the loop phase is not constant with respect to time, the
phase-noise reduction factor for the self-injection-locked oscil-
lator will not be fixed at the noise offset frequency relative to
the carrier frequency . The effects of the oscillator frequency
change and loop phase variation should be studied carefully in
the future.
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